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Fpses Motivation for detector development - Astronomy

« Semi-conductor technology Limited to wavelengths of order 200um (1.5 THz)

« Heterodyne receivers are typically noisy and not practical for large format
Imaging arrays

« Bolometers have sensitivity but poor multiplexing ratios
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Motivation for detector development — Security and Industry
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Pixel counts in Astronomical receivers over the years
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¢ Superconductors are most famous for demonstrating zero DC
resistance at temperatures below the transition temperature (T)

® It would seem that the Physical properties of the superconductor is
not changing below T_. However ........

RA

some metals
(e.g. lead)

pure metal
(e.g. Cu)

supercondugting

Magnetism, supercondctivity&'their applicafios Nov 2016
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Below The Transition Temperature

Below T_ the electron population is dividing into separate populations.

A population of electrons weakly bound together called Copper pairs,
bound together with an energy 2A (typically 0.4 meV) and denoted as n..

The remaining normal state electrons denoted n, or n,,

T\
The populations can be described to first order by - s =1— (T)
n

Cc

vvvvvvvvvvvvv

T

n, Behave as normal state electrons.

B 1 ng Are paired electrons bound by and
Energy 2A. These paired electrons are
immune from scattering and hence loss
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The conductivity of normal metals (Drude model)

0o
T ot ™Q 0 OP
7 Ox/
n,e’t - np,elwt? ‘\/OQ
% = m(1 + w?72) B m(1 + w?72) @ @ ©
= 9.1x103!
~ 1029

Tis typically of order 10-1*s and at practical frequencies, say f=5GHz (w=3x10%9)
leaving w?t? << 1 and the imaginary term negligible.

n,e*t
neT n
B — " -_— 0, =
m(l
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gee  Conductivity of non-scattering electrons

The phenomena of superconductivity arises from the non-scattering properties of
the superconducting electron population n..

Consider the Drude model where T = o= to denote a non-scattering electron
population n..

nee’t . n.elwt?
O = —
> m(1 + w?1?) J m(1 + w?72)
_ nge?  tow . . ngelw oo nge?
01 = m 4 Oy = —] y —

2 m
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E Field
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What is Kinetic Inductance?

A complex surface impedance associated with the inertia of a non-
scattering electron population in a superconductor (Cooper-pairs).

Oy =

Velocity
<« e
G Q"
<+« e
e-
e »
" m=p

. n’Se2

]wm

As an electron is accelerated in an electric
field it gains kinetic energy due to the
velocity gained and the electron mass.

When the field is reversed the kinetic
energy gained must be returned to the field
before the electron can change direction.
The electron velocity is proportional to the
current, hence the current will lag the field
as it would in an inductor.
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ey 1 he two fluid model of superconductors

® The resistive behavior of a superconductor at RF frequencies can be
explained by considering the two fluid model.

‘j G2Ns

Magnetism, superconductivity & their applications Nov 2016
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S Quasi-particle lifetime
A Cooper pair can be split, by say absorbing a photon of energy hf>2A. The

time for the quasi-particle to recombine to form a Cooper pair is dictated
by the quasi-particle lifetime given by Kaplan theory:

S} 1 A Metal T./K 75 X 107s
1 VI 20 \2 (T \2 =T Aluminium 1.19 438
T - T k.- T T_ e"B Tantalum 4.48 1.78
qp 0 B¢ c Niobium 0.2 0.149
. . Tin 3.75 2.3
Here T ,is a material Zine 0.8'7; 230
dependent property ,
— 10 m Lifetime from spectra
L 1u . Lifetime theory
. .
P nt g
N =_o ! 5
qp o
O
A :
e
(7))
®
)
PJ. de Visser, et al., J. Low Temp. Phys., C

vol. 167, no. 3-4, pp. 335-340, Jan. 2012. 100 150 200 250 300
Temperature (mK)
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- Response to change in quasi-particle density

CARDY(D
30nm Al film 4x4pm patch simulated over 200-500mK
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B To recap

Superconductor have two electron population
* A normal state population giving a conductivity o,

* A paired population that does not scatter giving a
conductivity o,

« Photon absorption alters the populations increasing o 4
and reducing o0,

 The number of quasi-particles generated for a given
power is proportional to the quasi-particle lifetime.

« This is the basis of photon detection
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o How to measure small changes in surface
iImpedance

® Change in internal inductance is still relatively small for
typical variations in source power

@ This small change can be sensed using:

1.220

. . 1.215}
® Hj Q microwave resonators

® |ow noise cryogenic amplifiers g™
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MM Basic principals of a Kinetic Inductance Detector
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o Types of KID detector - The Lumped Element
Kinetic Inductance Detector (LEKID)
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w1 Ypes of KID detector — Distributed Kinetic
Inductance Detector (MKID)

(AFRDYD
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@ Measuring the sensitivity

The sensitivity of any detector is measured by:

0l

® Measuring the response to optical power — in the case of
the KID dF,/dP.

The sensitivity then depends on how accurately you
can measure this response. We define a time over

which we average measurement of the response to be
0.5s.

® For a KID we measure F, for 0.5s and establish an error
In our measurement. This is the noise
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Measuring the sensitivity

Noise occurs over a range of frequencies and forms a
noise spectrum.

0Q

In practice me measure this noise spectrum.

This is done by measuring F, for a period of time and
taking a Fourier transform.

The resulting Fourier transform is scaled to give the
noise in a 1 Hz bandwidth (0.5s) of integration as a

function of frequency.



CARDIFF

UNIVERSITY

mew KID readout in the complex plane (1Q)

(CASRDYD

. |
Tone in )

m==) Tone out

0.6 - -
— Dark KID
— llluminated KID
0.4} e e Dark KID Tone
e o |[lluminated KID Tone
02| N\
Z 00

—0.2} ]
0.4} i

0.6

0.8

1.0

S21 Amplitude / V
o
o

o
[N}

0.0

0.5}

Phase / Rads

-1.0

o
o
.

o
>
T

0.0}

— Dark KID

— llluminated KID

— Dark KID
— llluminated KID

0.0998 00999 1.0000 1.0001 1.0002 1.0003
Frequency / GHz




CARDIFF

UNIVERSITY

Measuring sensitivity
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Response to photon absorption
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e [ypical noise spectra of a KID

- Generally clean noise spectra due to low susceptibility to
EM noise sources.
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So we have a sensitive detector!

KID detectors are extremely sensitive.

Reach the photon noise limit down to powers of 1fW (10-1°W)
* This is the limit of any measurement imposed by the natural noise
associated with the random arrival rate of photons from a source.
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B Putting NEP into context

A 100W incandescent light bulb produces about 5W of optical power. m’
4 |
If we placed our detector on a modest telescope with 1m? collecting %

area, how far away can our light bulb be an still be detected in 0.5 =
second of observing?

NEP=5x10-8 W/s®-®> which means we have a signal to noise ratio of
1 if we observe for 0.5s. If we observe for 1 second this increases by
V2 = 1.4 - so just observable.

Power 5

: Flux =
Flux at distance D from bulb Area A

We collect over the 1m?2 area of the telescope so:

aayer x collecting area = 2 -x1l—=r= \/ 2 = \/ 2 = =2.8X 10°m
Area drr 41t x Power 4w xS5x10"

About 70% of the distance to the moon!



e~ Natural multiplexing in KID devices
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« Each LEKID is a high Q micro-resonator with a tunable f0

« We can therefore multiplex many LEKIDs onto a single CPW feed-line

Magnetism, superconductivity & their a ations Nov 2016
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Principal of operation - Multiplexing

M Readout: each dip = 1 KID

Il |

»  Readout tones

e 210K
= 310mK
5 ~ S40mK

up to 10.000 pixels/coax cable pair

RS ) Y . A i N
4645 4646 4647 4648 4640 465 4651 4652

Magnetism, superconductivity & their applicatio  ——— i
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GRS Simple Readout Electronics
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Making an array of LEKIDs

* In most cases 1
deposition and etch step

* Minimal material costs

* Cleanroom time »: day




Optical coupling and band defining
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Current Instruments NIKA on IRAM

NIKA A dual band (150GHz and 220 GHz) mm astronomical camera on the
IRAM telescope working just above the photon noise limit at 2mm

1000 pixels @ 2mm

2000 (degree)

2 x 4000 pixels @ 1mm (2 arrays
polarisation sensitive).

Magnetism, supercondt
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KIDcam — A Terrestrial THz imager

Magnetism, superca



KIDcam — A Terrestrial THz imager
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B On-Chip Spectrometers

High TC material like Niobium  Low TC material like Aluminium

hv<2A v _,=600 GHz Hy>2A v _.=90 GHz

cut cut

M1
A Zfeed _
Zfilter | |
M2
Detecting Detecting Detecting C R, C
Element Element Element | ‘_/\/\/\_' |

Distributed filtering elements

Wk}

— T O ¥y o
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On-Chip Spectrometer Results
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Current applications — Optical photon
| | energy resolving detection

Images courtesy of Ben Mazin, University of Santa Barbara, USA
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LEKIDs have been demonstrated to work across a wide range of
sensing applications. Some of the key benefits of LEKIDs are:

Relatively immune to temperature fluctuations
Very easy to fabricate (single layer process)

Inherently easy to multiplex - MUX ratios of up to 10’000 are
achievable

Are sensitive — will meet the photon-noise limit in most cases

Can be used to energy resolve for single photon counting
applications.

Are fast — time constants typically of order 10-50
microseconds
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Two-Fluid model of a Superconductor

Below T, the electron population splits into two
separate population

® One of normal electrons known as Quasi-Particles

® One of electrons paired together with a typical binding
energy 2A of around 0.4 meV (Aluminium). These paired
electrons are commonly known as Cooper pairs.

The quasi-particle population acts as a normal metal would do,
l.e. is resistive. This gives us a conductance o,

The paired population are have no resistance but do have an
associated reactance known as Kinetic Inductance / Internal
Inductance. This gives us a conductance jo,

Absorption of a photon with hv> 2A breaks Copper pairs and
alters these populations.
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Internal Inductance for practical film thicknesses

Quite often we are working between the limits of t << A and t >>A,. In this
case we need to perform the surface integrals for current over the entire film
cross-sectional area and take into account any variations in current density.

A Superconducting Medium

[

.UOL

o (g7) + )| eose<” (37,

OAL ( t t ) e
coth 2/1) (E ]cosec (Z_AL)




The London penetration depth

——— T TN For a non-scattering electron volume

B(a)

B(x)=B(s)exp (\/m/;xn ez)
0'ts

For a superconducting electron volume

B=B(a)exp(-x/A.)

— >

B(x)=B(s)exp ( \/m/;xn ez)
0/ts

Applying Maxwell’s equations to a perfect conductor displays diamagnitism of AC
magnetic fields.

London and London suggested a set of constitutive conditions to Maxwell’s
equations so that both DC and AC fields as expelled from the bulk of a
superconductor.

The field decays to 1/e of its value at the surface within the London penetration
depth A,.

The London Penetration depth
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Is a commercial sub-K system viable?

* Modern pulse tube systems now cryogen free and push button operation.

e Closed cycle systems can be automated and continuous. No user input
necessary.



